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Subudhi AW, Lorenz MC, Fulco CS, Roach RC. Cerebrovas-
cular responses to incremental exercise during hypobaric hypoxia:
effect of oxygenation on maximal performance. Am J Physiol Heart
Circ Physiol 294: H164-H171, 2008. First published November 21,
2007; doi:10.1152/ajpheart.01104.2007.—We sought to describe ce-
rebrovascular responses to incremental exercise and test the hypoth-
esis that changes in cerebral oxygenation influence maximal perfor-
mance. Eleven men cycled in three conditions: /) sea level (SL);
2) acute hypoxia [AH; hypobaric chamber, inspired Po, (Pio,) 86
Torr]; and 3) chronic hypoxia [CH; 4,300 m, Pio, 86 Torr]. At
maximal work rate (Wmax), fraction of inspired oxygen (Fio,) was
surreptitiously increased to 0.60, while subjects were encouraged to
continue pedaling. Changes in cerebral (frontal lobe) (Cox) and
muscle (vastus lateralis) oxygenation (Mox) (near infrared spectros-
copy), middle cerebral artery blood flow velocity (MCA Viean;
transcranial Doppler), and end-tidal Pco. (PETco,) were analyzed
across %W max (significance at P < 0.05). At SL, PETco,, MCA Vinean,
and Cox fell as work rate rose from 75 to 100% W pax. During AH,
PETco, and MCA Vinean declined from 50 to 100% Wax, while Cox
fell from rest. With CH, PETco, and Cox dropped throughout exercise,
while MCA Viyean fell only from 75 to 100% Winax. Mox fell from
rest to 75% Wmax at SL and AH and throughout exercise in CH. The
magnitude of fall in Cox, but not Mox, was different between
conditions (CH > AH > SL). Fio, 0.60 at Wpax did not prolong
exercise at SL, yet allowed subjects to continue for 96 = 61 s in AH
and 162 * 90 s in CH. During Fio, 0.60, Cox rose and Mox remained
constant as work rate increased. Thus cerebral hypoxia appeared to
impose a limit to maximal exercise during hypobaric hypoxia (Pio, 86
Torr), since its reversal was associated with improved performance.

altitude; near infrared spectroscopy; cerebral blood flow; fatigue;
muscle oxygenation

CEREBRAL HYPOXIA HAS BEEN proposed to be a critical factor
limiting exercise performance (37), particularly in hypoxia (7),
yet little evidence exists to directly support this theory. Kayser
et al. (31) were the first to show that rapidly increasing the
fraction of inspired oxygen (Fip,) at the point of maximal
exertion prolonged exercise in hypoxia-acclimatized subjects.
They concluded that the effect of increased Fip, was too quick
to have reversed metabolic factors associated with peripheral
(intramuscular) fatigue and suggested that cerebral reoxygen-
ation was a more likely explanation for the improvement in
exercise performance. Calbet et al. (11) arrived at similar
conclusions after using a comparable model to study factors
limiting O, uptake (V0,). They suggested that exercise under
hypoxic conditions may have presented a significant threat to
cerebral oxygenation; thus cardiac and/or motor output was
curtailed to maintain favorable tissue oxygenation status.

While these studies insinuate the importance of preserving
cerebral oxygenation during exercise in hypoxia, the conclu-
sions remain speculative, since neither cerebral oxygenation
nor cerebral blood flow was measured.

Rasmussen et al. (40) have shown that decreased cerebral
oxygenation was associated with a loss of handgrip strength
during severe, acute hypoxia (AH) [Fip, 0.10; inspired Po, (Pio,)
71 Torr; arterial O, saturation from pulse oximetry (Spo,) ~82%],
and Amann et al. (4) confirmed that, under severe hypoxic
conditions (Fip, 0.10; P1o, 69 Torr; Spo, ~67%), increasing
Fio, at the point of exercise task failure improved cerebral
oxygenation and prolonged cycling time to exhaustion, yet
such effects were not seen during more moderate levels of
hypoxia (Fip, 0.15; Pio, 104 Torr; Spo, ~82%). It has thus
been suggested that cerebral hypoxia plays a dominant role in
limiting exercise performance when arterial Po, falls below a
critical level (4). However, the role of cerebral blood flow and
its contribution to the development of cerebral hypoxia during
maximal exercise have not been described.

Arterial CO; pressure (Paco,) is believed to be the dominant
factor regulating cerebral blood flow under normoxic and
hypoxic conditions (9). During intense exercise, reduced
Paco, due to relative hyperventilation results in cerebral
vasoconstriction and decreased cerebral blood flow and thus
may be responsible for a slight decrease in cerebral oxygen-
ation near maximal exercise under normoxic conditions (6,
46). It follows that, during intense hypoxic exercise, in-
creased ventilation (27) may cause an even larger fall in
Paco,, which could impose cerebral hypoxia of sufficient
severity to limit maximal exercise performance.

We tested this hypothesis during incremental exercise to
maximal exertion, in combination with the gas switch model of
Kayser et al. (31) under normoxic and both AH and chronic
hypoxic (CH) conditions. We reasoned that, if cerebral hypoxia
exerts a large influence on maximal exercise performance, the
switch to hyperoxic gas would improve performance via a
reversal of cerebral deoxygenation (35).

METHODS

Institutional approval was granted by the participating institutions
before subject recruitment. Eleven active-duty, male military subjects
were recruited from the Human Research Volunteer program at the
US Army Natick Soldier Research, Development, and Engineering
Center (Natick, MA). All gave their written, informed, voluntary
consent to participate. Subjects were sea level (SL) residents with no
exposure to altitudes >500 m during the previous 3 mo and were
given medical clearance before participation.

Address for reprint requests and other correspondence: A. W. Subudhi,
Dept. of Biology, Univ. of Colorado at Colorado Springs, 1420 Austin Bluffs
Parkway, Colorado Springs, Colorado 80918 (e-mail: asubudhi@uccs.edu).
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CEREBROVASCULAR RESPONSES DURING EXERCISE

Study outline. The protocol presented represents a portion of a
larger Army medical research project conducted under the direction of
the United States Army Research Institute of Environmental Medicine
(USARIEM). Subjects were first studied at SL in the USARIEM
laboratories (Pio, 149 Torr) to obtain baseline measurements. During
the SL phase, ~1 wk after baseline was established, the effects of AH
were determined during a 1-h exposure to hypobaric hypoxia (Pio, 86
Torr) in the USARIEM environmental chamber. Approximately 7 wk
later, subjects were flown to moderate altitude for a 5-day acclimati-
zation period at the United States Air Force Academy in Colorado
Springs, CO (Pio, 115 Torr). Subjects were then driven to the
USARIEM high-altitude laboratory on the summit of Pike’s Peak
(P10, 86 Torr) and retested after 24 h (CH).

Exercise protocol. All subjects performed four incremental exer-
cise bouts to maximal volitional exhaustion on an electrically braked
cycle ergometer (Lode, Excalibur Sport). The first test was used as a
practice session to familiarize subjects with the protocol and instru-
mentation. The remaining three experimental trials were performed
under similar conditions at SL, AH (hypobaric chamber), and CH.
After a 3-min rest period on the ergometer, pedaling was initiated at
50 W with a target rate of 85 rpm. Work rate was increased to 100,
130, and 160 W in 2-min increments. Thereafter, work rate was
adjusted by 15 W each minute until exhaustion. When criteria for
maximal aerobic power (Wmax) were achieved [respiratory exchange
ratio > 1.10, no increase in Vo, over the previous 15 s, pedal cadence
dropping below 60 rpm (70% of target rpm), despite strong verbal
encouragement], the inspired Fio, was surreptitiously switched to 0.60
(single blind design), while verbal support was continued. The test
was terminated when cadence could not be maintained above 50 rpm
(60% of target rpm). Power (W) was interpolated between stages as
W = work rate of last stage completed + [(work rate increment) X
(time into current stage/duration of stage in seconds)]. Wax was
calculated with the same formula, provided that subjects completed
at least 15 s of the stage. Reliability of metabolic and power
parameters determined by similar methods has been described in a
previous report (5).

Instrumentation. A continuous-wave near infrared spectrometer
(NIRS; Oxymon MKII, Artinis) was used to monitor changes in
cerebral and muscle oxygenation throughout exercise. The theory,
limitations, and reliability of measurements obtained with this instru-
ment during incremental exercise have been previously reported (46).
During all exercise sessions, subjects were instrumented with two
pairs of NIRS probes to monitor absorption of light across cerebral
and muscle tissue. Headsets were constructed to hold one near
infrared emitter and detector pair over the left frontal cortex region of
the forehead. Spacing between optodes was 4.5 cm, and headset sizing
and placement were adjusted and recorded to ensure optimal signal
strength on each individual during each trial. A second emitter and
detector pair was affixed over the belly of the left vastus lateralis
muscle. Placement of the optodes was measured (~15 cm above the
proximal border of the patella and 5 cm lateral to the midline of the
thigh), marked with indelible ink, and recorded to facilitate subse-
quent replacements. Skinfold measurements were made in the sagittal
plane midway between optodes to account for skin and adipose
thickness. Probes were held in place by a plastic spacer with an optode
distance of 5.0 cm and secured to the skin using double-sided tape.
Elastic bandages were used to shield optodes from ambient light. A
modified form of the Beer-Lambert Law was used to calculate
micromolar changes in tissue oxyhemoglobin (HbO,) and deoxyhe-
moglobin (HHDb) across time using received optical densities from two
continuous wavelengths of near infrared light (780 and 850 nm) and
published differential path-length factors of 4.95 (15) and 5.93 (48)
for muscle and cerebral tissue, respectively. Changes in total Hb
(THb) were calculated by the sum of HbO, and HHb and used as an
index of change in regional blood volume (47). All cerebral and
muscle measurements were normalized to reflect changes from a
1-min baseline period immediately before the beginning of the exer-
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cise protocol (arbitrarily defined as 0 wM) to express the magnitudes
of changes throughout exercise. Data were recorded at 125 Hz and
filtered with a Bartlett Triangle smoothing algorithm before analysis.

Transcranial Doppler was used to monitor middle cerebral artery
(MCA) blood flow velocity (Vimean) during exercise. The custom-
made NIRS headsets were modified to hold a 2-MHz Doppler probe
(DWL Multi Dop T2) over the temporal window to insonate the artery
(34). All measurements were optimized at the same penetration depth
(42-48 mm) on each individual by a single, trained investigator.
Continuous tracings of the velocity envelope were recorded at 125 Hz
and processed offline to determine time-averaged velocity (MCA
Vimean). It was assumed that MCA Vy,ean measurements were reflective
of changes in cerebral blood flow throughout the protocol, based on
data showing consistent MCA diameter across a range of Paco, values
(19, 45) and parallel increases in internal carotid artery flow and MCA
Vimean during incremental exercise (23).

Respiratory and metabolic measurements of ventilation, Vo,, and
CO, production were obtained over 15-s periods via an automated
metabolic cart (ParvoMedics TrueOne 2400, Sandy, UT) following
correction for small volumes drawn (300 ml/min) into a separate CO»
analyzer (Beckman LB2) for end-tidal Pco, (PETco,) determinations.
Inspired air was directed to the subject through 1.8 m of plastic tubing
and valve system that delivered either ambient air or compressed,
medical grade, dry gas (60% O-, 40% N>) via a 200-liter Douglas bag
reservoir. Heart rate was measured and recorded with a chest strap and
monitor (Polar USA, Irvine, CA). Subjects were instructed to keep
their hands and fingers relaxed during exercise testing to obtain
strong, pulsatile, finger-tip Spo, measurements from either the left
index or middle finger using a Nellcor N-200 oximeter (Pleasanton,
CA). The instrument is accurate to *2 units across the range of 70—100%
and demonstrates acceptable resilience to motion artifact (32).

Analyses. Continuous data were collapsed to analyze specific time
points of interest, corresponding to rest and 25, 50, 75, and 100% of
Wiax Wwhile breathing ambient air, plus at W, obtained after
administration of 60% O (+0-). Metabolic data after the gas switch
to Fio, 0.60 were not analyzed because several subjects reached
exhaustion before adequate equilibration of alveolar nitrogen concen-
tration, a necessary assumption for the Haldane transformation, was
achieved. Data were analyzed with multivariate (Wilk’s Lambda),
repeated-measures ANOVA to evaluate effects of treatment (SL, AH,
CH) across relative work rates (rest; 25, 50, 75, and 100% W nax; and
+0,). Changes in all variables of interest at absolute work rates of
100 and 175 W were analyzed similarly. Criterion for significance was
set at P < 0.05. Post hoc, pairwise comparisons were made using the
Holm’s sequential method to control for type 1 error. Pearson product-
moment analyses were used to evaluate relationships between changes
in PETco,, MCA Vinean, and cerebral THb. The intraclass correlation
coefficient o was calculated across work rates to assess the test-retest
reliability of MCA Vi,ean measurements obtained from a subset of
seven subjects during the practice and SL exercise bouts. Data are
presented as means = SD.

RESULTS

Subjects. All 11 subjects participated in each phase of the
study, yet 1 subject stopped exercising immediately before the
gas switch during HA due to knee pain. Subjects were 21 = 3
yr old, 176.5 = 7.5 cm tall, weighed 77.6 = 12.3 kg, and had
thigh skinfold measurements of 12.8 = 3.6 mm at SL. No
significant changes in these variables were measured during
AH or CH.

Sea level. Vo, increased with work rate until the last 15-s
period before the gas switch (<0.01 ml/min increase) (Table 1).
During this period, pedal cadence dropped from 82 * 3 to <60
rpm. After the gas switch, pedal cadence continued to fall,
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CEREBROVASCULAR RESPONSES DURING EXERCISE

despite strong verbal encouragement, and the test was termi-
nated when pedal rpm dropped below 50, <10 s later.

Oxygenation of the vastus lateralis was progressively re-
duced during incremental exercise up to 75% W nax, but dem-
onstrated a plateau thereafter (Table 1). In contrast, cerebral
oxygenation rose from rest through moderate-intensity exer-
cise, likely due to vasodilation (increased HbO-, THb, Perco,,
and MCA Viean), but fell from 75 to 100% Wy (decreased
PETco, and MCA Vipean and increased HHb and THb). Follow-
ing the gas switch, cerebral THb decreased, and muscle THb
increased, suggesting cerebral vasoconstriction and muscle
vasodilation.

The correlation between PETco, and MCA Viean Was signif-
icant at low work rates, as both variables increased (R> = 0.72;
slope = 1.8 cm+s~!-Torr™!), but was stronger above 50%
Wnax, as both variables decreased (R> = 0.91; slope = 0.79
cm-s”!-Torr™!) (Fig. 1). Changes in cerebral blood volume
(THb) were correlated with changes in MCA Vipean (r = 0.61)
up to 75% Wnax (Fig. 2). From 75 to 100% W .y, correlations
of MCA Viean and PETco, with THb displayed inverse rela-
tionships (r = —0.86 and r = —0.85, respectively).

Test-retest measurements of resting MCA Vyyean measure-
ments obtained during the practice and SL bouts yielded a
coefficient of variation of 4.87%. This statistic incorporates
daily variation in MCA Vy,ean and accuracy in replacement of
the transcranial Doppler probe. The intraclass correlation co-
efficient o calculated across work rates was 0.91, indicating
that the pattern of change in MCA Vpe.n Was consistent
between bouts.

Acute hypoxia. W . and maximum Vo, (VOamax) achieved
during AH were 18 = 6 and 31 = 8% lower, respectively, than
SL. However, following the gas switch, 8 of 11 subjects were
able to immediately increase pedal cadence from <60 to 82 *
10 rpm and continue for an average of 96 = 61 s. The
increased cycling time resulted in an 11% increase in power,
ending at 89 * 4% of SL W ax.

The extent of muscle deoxygenation was greater at each
absolute work rate (Table 2), yet the pattern of deoxygenation

80 SL

704
80 0 <50% Wmax R*=0.91
1 @ >50% Wmax

O R=0.72
50 T T T T T T 1

807 AH

70
: 6}
60 _ R=0.93 OQQ R*=0.16

50 T T T T T T 1
80

70
60 _ R’=0.90 .
| R=0.13

04— F——F—————————————

MCA Vmean (cm/s)

PETCO2 (Torr)

Fig. 1. Scatterplots showing relationships between middle cerebral artery
mean blood flow velocity (MCA Viean) and partial pressure of end-tidal carbon
dioxide (PETco,) across work rates. At sea level (SL), the correlation is strong
at low work rates, but becomes markedly stronger above 50% maximal work
rate (Wmax). During acute hypoxia (AH) and chronic hypoxia (CH), the
correlations are weak at low work rates, but become strong above 50% Winax.
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Wiax, indicating that frontal lobe blood volume increases with work rate,
despite reductions in PETco, and MCA Viean.

observed across relative work rates was similar to that at SL
(Fig. 3), with no differences between any muscle NIRS values
at W After the gas switch, muscle HbO, increased (29 =
11% return to baseline) and HHb decreased (23 + 11% return
to baseline) without a change in THb.

Cerebral oxygenation fell throughout exercise until Wp,y.
Cerebral HbO, was less and HHb was greater than SL at all
absolute and relative work rates, while THb remained similar
between conditions. Following the gas switch, cerebral oxy-
genation increased as HbO, rose (275 % 174% return to
baseline) and HHb fell (192 £ 116% return to baseline)
without a change in THb.

The relationship between PETco, and MCA Viyean Was sig-
nificant between 50 and 100% W .x (R? = 0.93; slope = 0.78
cm-s™!-Torr~!) (Fig. 1). Correlations between cerebral THb
and MCA Vpean were ¥ = 0.71 (<50% Wpay), ¥ = —0.11
(50-75% Wiax), and r = —0.78 (75-100% Wpax) (Fig. 2).
Correlations between cerebral THb and Perco, were r = —0.37
(<50% Wax), 7 = —0.95 (50-75% Wiax), and r = —0.81
(75-100% Wmax) (Fig. 2).

Chronic hypoxia. Wayx and Vopmax were 15 + 5 and 21 *
6% lower, respectively, than SL, but 4 = 6 and 16 = 8%
greater than AH. Following the gas switch, 9 of the 10 subjects
completing the protocol were able to increase pedal cadence
from <60 to 88 = 11 rpm and continue cycling for 162 = 90 s.
The increased cycling time resulted in a 17% increase in
power, ending at 97 = 7% of SL W ax.

Muscle oxygenation followed a nearly identical pattern to
that seen in AH (Fig. 3). The extent of deoxygenation was
greater than SL at each absolute work rate, but not different
from AH. Expressed relative to SL Wiax, there were no
differences in muscle oxygenation between the three condi-
tions at any work rate. After the gas switch, muscle oxygen-
ation increased as HbO; rose (31 = 25% return to baseline)
and HHD fell (30 % 25% return to baseline) without a change
in THb.
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DISCUSSION

Our data describe differences in cerebrovascular responses
to incremental exercise in normoxia and during acute and
chronic exposures to hypobaric hypoxia. The results support
the hypothesis that changes in cerebral oxygenation influence
maximal exercise performance during hypobaric hypoxia.

Cerebrovascular responses to incremental exercise. At low-
to-moderate exercise intensities (<75% Wiax) in normoxia,
increases in cerebral oxygenation and regional cerebral blood
volume (increased HbO, and THb) were associated with si-
multaneous increases in PETco, and MCA Vinean. A reasonable
explanation for this is that exercise-induced elevation of Paco,
results in cerebral vasodilation, increased cerebral blood flow,
and augmented cerebral oxygenation; however, the shared
variance between these variables was <36%. It is thus proba-
ble that other local factors that affect vascular tone, such as
adenosine (50), potassium (17, 18), reactive oxygen and nitro-
gen species (16), and/or autonomic function (49), influence
cerebral blood flow and oxygenation during normoxic exercise.

The relationship between PETco, and MCA Viean during low
work rates was strong, but was distinctly stronger from mod-
erate to high (75-100% W.x) work rates. Others have re-
ported similar changes in cerebrovascular reactivity from rest
to moderate work rates (38), yet such a distinct breakpoint in
reactivity (Fig. 1), associated with a switch from rising to
falling PETco, and MCA Viyean, has not been described during
continuous incremental exercise. Support for a relative inde-
pendence between Paco, and cerebral blood flow, which may
explain the weaker PETco,-to-MCA Vipean correlations at low
work rates observed in the present study, has been provided by
studies demonstrating a strong association between cerebral
blood flow and cardiac output during submaximal exercise (25,
26, 39). Specifically, Ogoh et al. (38) showed that increases in
cardiac output were largely responsible for augmented cerebral
blood flow during low-intensity exercise (50% V0omax)-

At high work rates, changes in PETco, and MCA Vipean were
inversely correlated with changes in THb, indicating that
decreased MCA Viyean Was accompanied by increased frontal
cortex blood volume. This seemingly paradoxical finding em-
phasizes the regional specificity of cerebrovascular regulation
(20). We propose that, during high-intensity exercise, de-
creased cerebral blood flow, coupled with a slight increase in
metabolic demand (13), results in relative cerebral hypoperfu-
sion, which, in turn, stimulates parasympathetic-induced vaso-
dilation (28). Since venous vessels hold 70—-80% of cerebral
blood volume (42), cerebrovasodilation is reflected primarily
by increases in HHb and THb, as seen from 75-100% Winax.

During AH, relationships between PETco, and MCA Vinean
were weak across low work rates, as MCA Viean increased
while PETco, remained stable. Similar findings in cerebrovas-
cular reactivity have been reported (1, 27) and may be ex-
plained by the direct influence of increased cardiac output on
cerebral blood flow (25, 26, 38). At moderate and high work
rates, the PETco, and MCA Viyean relationship was restored to
a linear relationship as Perco, began to fall. Following accli-
matization, the slope of the relationship was reduced, indicat-
ing that cerebrovascular reactivity was decreased during mod-
erate- and high-intensity exercise. This compensatory effect
attenuated hypocapnic-mediated reduction in cerebral blood
flow during the ventilatory acclimatization period.

H169

Cerebral hypoxia and exercise performance. This study
adds support to the theory that cerebral deoxygenation during
exercise poses a limitation to maximal exercise performance in
hypoxia (7, 8, 30, 36, 37). Direct cerebrovascular evidence for
this hypothesis has been limited to studies in AH of isolated,
small muscle mass activity (40) and submaximal cycling to
exhaustion (4). Our incremental cycling protocol expands the
range of knowledge to encompass maximal intensity exercise
in AH and CH.

Our results are similar to those of Amann et al. (4), who
showed that physical fatigue during acute exposure to severe
hypoxia (Fio, 0.10; Pio, 69 Torr; Sp o, ~67%) was largely
influenced by central factors (outside the muscle), since a rapid
switch to a hyperoxic inspirate (Fio, 0.60) improved cerebral
oxygenation (NIRS) and exercise time to exhaustion, in the
absence of a critical level of peripheral muscle fatigue (2, 3, 29,
41). Because muscle factors appeared to exert a dominant
influence in determining fatigue during normoxia (Fip, 0.21;
Pio, 145 Torr; Spo, ~94%) and at moderate levels of hypoxia
(Fip, 0.15; Pio, 104 Torr; Spo, ~82%), the authors proposed
that central factors, such as cerebral hypoxia, play a predom-
inant role in fatigue when exercise elicits Spo, values >70—
75%, associated with a Pio, between 69 and 104 Torr. In the
present study, switching to a hyperoxic inspirate (Fio, 0.60)
was associated with increased performance during Acute hy-
poxic exposures and CH (Pio, 86 Torr) when Spo, at maximal
intensity was <75%.

During the late stages of exercise at SL, subjects exhibited
signs of relative cerebral deoxygenation, yet the magnitude of
cerebral hypoxia was unlikely to limit performance (46). Mus-
cle deoxygenation may also have influenced the sensation of
fatigue, but the data show a stable relationship between muscle
oxygen delivery and consumption from 75 to 100% W ax,
suggesting that muscle oxygenation was not at a critically low
level. Following the gas switch at SL, subjects’ pedal cadence
continued to fall, taking <10 s to drop below the minimal
cadence criteria of the test (50 rpm). The short period of
hyperoxia (Fio, 0.60) was associated with a slight improvement
in arterial saturation, but no increase in cerebral or muscle
oxygenation, given that there were no changes in HbO,. The
lack of significant improvement in oxygenation supports the
contention that the extent of tissue deoxygenation experienced
during normoxia was not a limiting factor (21, 46). We believe
it is more likely that subjects were limited by other factors,
such as intramuscular accumulation of inorganic phosphos-
phate (24), which ultimately decreased central motor drive (2).

The magnitude of cerebral deoxygenation during hypoxic
exposures was more likely to have affected efferent motor
drive and exercise performance (2). A link between cerebral
hypoxia and motor performance has been proposed (4), in
which reduced neurotransmitter turnover rates affect limbic to
motor communication in the basal ganglia (33), thus influenc-
ing motivation (43, 44) and movement (12). It may thus be
argued that, because the gas switch increased cerebral oxygen-
ation to levels above that seen at rest, the influence of cerebral
hypoxia on fatigue was completely alleviated, and subjects
were able to continue exercise. The fact that subjects were able
to continue cycling until they reached approximately the same
Woax achieved in normoxia suggests that peripheral muscle
factors may have been responsible for the sensation of exhaus-
tion at the end of exercise in hyperoxia (4).
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Changes in muscle oxygenation following the gas switch are
less likely to explain the results, since the effect on perfor-
mance was too quick to have been mediated via a reduction in
the accumulation of factors associated with peripheral muscle
fatigue (4, 31). Similarly, muscle oxygenation was only par-
tially restored to a new plateau, representing a continuing
balance between oxygen delivery and consumption, which was
maintained, despite increased work rates.

These findings illustrate an association between cerebral
oxygenation and maximal exercise performance during acute
hypoxic exposures (Pio, 86 Torr; Spo, <75%), but do not
imply a cause-and-effect relationship. Because fatigue is a
perception, it is likely to be influenced by many sensory inputs;
thus the increase in performance may have been moderated by
other oxygen-sensing tissues, such as peripheral chemorecep-
tors or even the pulmonary vasculature (22). Alternatively,
increased heart rate during hyperoxia raises the possibility that
exercise before the gas switch may have been limited, at least
in part, by a hypoxia-induced limitation to cardiac output (10,
11). While switching from acute hypoxia to hyperoxia does not
affect heart rate when work rate remains constant (4), heart rate
may continue to rise if work rate is increased (10). In the
present study, peak heart rate before the gas switch was lower
in CH than AH, yet maximal heart rate during hyperoxia was
not different between conditions. This suggests that parasym-
pathetic-imposed limitations on cardiac output (8) may exert a
greater influence on fatigue during CH.

The first hypoxic test was performed in a hypobaric chamber
after ~20 min of resting exposure. The time before testing falls
within the time frame for the expected acute hypoxic ventila-
tory response, but precludes more pronounced ventilatory ac-
climatization. The second hypoxic test was performed after 5
days of acclimatization to moderate altitude (2,200 m: Pio, 115
Torr) and 24 h of exposure to high altitude (4,300 m; Pio, 86
Torr). This second approach was expected to elicit partial
ventilatory acclimatization. Subjects’ ventilatory responses at
Wmax Were, in fact, greater at CH (higher minute ventilation,
lower Perco, vs. AH). Higher ventilation rates might explain
the differences in cerebral oxygenation, if hypocapnic vaso-
constriction reduced cerebral blood flow and increased the
extent of relative hypoperfusion, yet MCA Vpcan near W nax
was greater in CH. This finding may be explained by the
reduction in cerebrovascular reactivity during moderate and
high intensities, which attenuated hypocapnic vasoconstriction.
We believe it is likely that the greater cerebral deoxygenation
seen at high altitude was related to elevated cerebral metabolic
rates, since data from the highest absolute work rate achieved
by all subjects during hypoxia (175 W) showed greater cerebral
oxygen consumption (lower HbO,, higher HHb, similar THb)
during CH. Combined effects of differences in cerebrovascular
responses and cerebral metabolism can explain the variations
seen during AH and CH.

Limitations. The continuous-wave NIRS technique used in
this study measures relative changes in cerebral oxygenation
from an arbitrary starting point. Since the differential path
length factors were estimated, absolute NIRS measurements
and tissue saturation values during each condition were not
measurable. Consequently, the absolute effect of acclimatiza-
tion on tissue oxygenation remains to be determined. Also, we
acknowledge the fact that frontal lobe oxygenation is a regional
measurement that may not be reflective of global cerebral

CEREBROVASCULAR RESPONSES DURING EXERCISE

oxygenation during exercise, as more active regions of the
brain may receive a greater proportion of blood flow (14).
Future studies that interrogate multiple regions of the brain are
needed to gain a clearer understanding of cerebrovascular
responses to exercise and their relationships with fatigue.

Conclusions. Hypobaric hypoxia affects cerebrovascular re-
sponses to incremental exercise and results in cerebral deoxy-
genation at maximal intensity. Cerebral oxygenation appears to
be an important variable influencing fatigue under hypobaric
hypoxic (Pio, 86 Torr), since reversal of cerebral deoxygen-
ation at maximal exertion was associated with increased per-
formance.
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